This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

ESTERIFICATION OF PHOSPHONIC AND PHOSPHINIC ACID ANALOGUES OF GLUTAMIC AND ASPARTIC ACIDS WITH ETHYL ORTHOFORMATE-SCOPE AND LIMITATIONS OF THE METHOD

Ewa Żymańczyk-Duda^a; Barbara Lejczak^a; Paweł Kafarski^a

^a Institute of Organic Chemistry, Biochemistry and Biotechnology, Technical University of Wroctaw, Wroctaw, Poland

To cite this Article Żymańczyk-Duda, Ewa , Lejczak, Barbara and Kafarski, Paweł(1996) 'ESTERIFICATION OF PHOSPHONIC AND PHOSPHINIC ACID ANALOGUES OF GLUTAMIC AND ASPARTIC ACIDS WITH ETHYL ORTHOFORMATE-SCOPE AND LIMITATIONS OF THE METHOD', Phosphorus, Sulfur, and Silicon and the Related Elements, 112: 1, 47-55

To link to this Article: DOI: 10.1080/10426509608046348 URL: http://dx.doi.org/10.1080/10426509608046348

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ESTERIFICATION OF PHOSPHONIC AND PHOSPHINIC ACID ANALOGUES OF GLUTAMIC AND ASPARTIC ACIDS WITH ETHYL ORTHOFORMATE—SCOPE AND LIMITATIONS OF THE METHOD

EWA ZYMAŃCZYK-DUDA,* BARBARA LEJCZAK and PAWEŁ KAFARSKI

Institute of Organic Chemistry, Biochemistry and Biotechnology, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

(Received July 27, 1995; in final form October 3, 1995)

Reaction of C-ethyl esters of phosphonic- and phosphinic acid analogues of glutamic and aspartic acids with ethyl orthoformate provides the mixtures of N-formylamino- and N-ethoxymethyleneimino-derivatives with nearly quantitative yields. Scope and limitations of this procedure were studied by means of GC/MS technique.

Key words: Amino acid analogues, esterification, phosphonopeptides.

INTRODUCTION

Aminoalkylphosphonic acids (1) are widely recognized as antimetabolites of amino acids which display interesting and useful biological properties.^{1,2} Their negligible mammalian toxicity, and the fact that they bear a very close chemical resemblance to their aminocarboxylic counterparts, makes them remarkably important structural units of phosphonopeptides and peptidomimetics. These peptides appeared to be promising enzyme inhibitors, antibacterials and anticancer drugs.³⁻⁵

During the last twenty years a considerable progress in the synthesis of phosphonopeptides has been achieved.^{3,6-10} However, the preparation of the peptides from aminoalkylphosphonic acids containing additional functional group in the side-chain is still a challenge.¹¹ This is mainly due to the lack of simple methods for the preparation of the properly blocked substrates from underivatized aminoalkylphos-

TABLE I
Reaction of phosphonic acid analogues of glutamic acid with ethyl orthoformate

Substrate	Product	Yield (%)	Yield of unreacted substrate (%)
H ₂ N COOH	H ₂ N COOEt	10	80
	Et ₂ O ₃ P PO ₃ Et ₂	4	
H ₂ N COOEt	H N COOLET	76	9
	EtO_N_COOEt	7	
CÎH ₃ N COOEt	H COOEt	71.5	10
	EtQ_N_COOEt	7	
CÎH ₃ N COOMe	H COOMe	63.5	15
	H COORE	10	

phonic acids. One of the simplest procedures seems to be the reaction of amino-alkylphosphonic acids with orthoformates which yields the mixtures of 1-(N-form-ylamino)alkylphosphonate (2) and 1-(N-ethoxymethyleneimino)alkylphosphonate (3). 12-14 This mixture upon reaction with the solution of hydrogen chloride in meth-

TABLE I (Continued)

Substrate	Product	Yield (%)	Yield of unreacted substrate (%)
H ₂ N PO ₃ H ₂	H PO ₃ Et ₂	40	22
	EtO_N_PO3Et2	29	
CÎH ₃ N PO ₃ H ₂	CÎH ₃ N PO ₃ Et ₂	48	20
	EtQ_N_PQ ₃ Et ₂	4	
	H POSES	14	
	EtO_N_PO ₃ Et ₂	10	

TABLE II

Reaction of phosphonic acid analogues of aspartic acid with ethyl orthoformate

Substrate	Product	Yield (%)	Yield of unreacted substrate (%)
H ₂ N COOEt	H COOEs	90	0
	EtO_N_COOEt PO ₃ Et ₂	5	
H ₂ N PO ₃ H ₂	H PO ₃ Et ₂	56	5
	EtQ_N_PQ_Et_2	36	
H ₂ N PO ₃ H ₂	H PO ₃ Et ₂	46	11
	H PO ₃ Et ₂	32	
H ₂ N OH	H O OEt	22	0
	EtOOC OEt	64	
	D OEt	7	

Yield of Yield (%) unreacted Product Substrate substrate (%) Œt 24 0 21 **EtOOC** 22 MeOOC 10 **EtOOC** 5 **EtOOC** 5

TABLE II (Continued)

anol yields the desired hydrochloride of diethyl 1-aminoalkylphosphonate with a good yield.

In this paper we report the usefulness of this procedure for the derivatization of phosphonic acid analogues of glutamic and aspartic acids.

RESULTS AND DISCUSSION

Reactions were carried out as described previously¹² and the composition of the product mixtures was studied by means of GC/MS technique. Results of the studies are summarized in Tables I (reaction of glutamic acid analogues) and II (reaction of aspartic acid analogues). As seen from Table I, underivatized phosphonic acid analogues of acidic amino acids are poor substrates and the esterification of their carboxylic acid groups should be performed prior the reaction with ethyl orthoformate. The C-ethyl esters readily reacted with ethyl orthoformate yielding the expected products 2 and 3 in good yields. The use of C-methyl esters is not recommended

TABLE III

Mode of fragmentation and principal ions in the mass spectrum of triethyl
2-(N-formylamino)-4-phosphonobutyrate

	HC(O)— NH	CH CO ₂ CH ₂ CH ₃ A CH ₂ B CH ₂ PO ₃ Et ₂
Ion	m/z (intensity, %)	Comments
[MH] ⁺	296 (1.4)	protonated molecular ion
[AH ⁺]	252 (6.2)	•
В	(30.6)	-
-	194 (99.3)	ion B minus CH ₂ =CH ₂
-	165 (11.1)	CH ₂ CH ₂ -PO ₃ Et ₂ fragment
-	152 (16.7)	CH3-PO3Et2 fragment
-	125 (15.9)	CH ₃ -P(OH) ₂ OEt fragment
-	109 (10.4), 81 (8.3), 65 (6.2)	products of -PO3Et2 group fragmentation
-	56 (100)	[HC(0)-N=CH]+

because the transesterification of carboxylate moiety by orthoformate resulted in the production of the mixed esters.

The acid catalysis in the reaction of aminoalkylphosphonic acids with ethyl orthoformate was reported to increase the yield of N-formyl derivative. ^{13,14} The use of C-ethyl 2-amino-4-phosphonobutyrate hydrochloride, however, did not result in any change of the reaction course. Quite surprisingly the reaction of C-ethyl 4-amino-4-phosphonobutyrate hydrochloride with ethyl orthoformate provided additionally the products of decarboxylation (compounds 4 and 5). Also the removal of N-formyl group from 2 by hydrogen chloride providing compound 6 was observed in this case.

Another unexpected finding was the removal of the amino moiety which resulted in the formation of compound 7 observed when C-methyl and C-ethyl 3-amino-3-(P-phenyl)phosphino-butyrates were used as substrates. The mechanism of this interesting reaction remains to be determined.

EXPERIMENTAL

Materials. All the reagents were of analytical purity. Ethyl orthoformate was purchased from Aldrich (Milwaukee, Illinois, USA). Aminophosphonic and -phosphinic acids, as well as their C-alkyl esters, were prepared according to the previously described procedure.¹²

Reaction of Aminophosphonates with Ethyl Orthoformate. A suspension of C-ethyl ester of aminoal-

TABLE IV

Mode of fragmentation and principal ions in the mass spectrum of triethyl
2-(N-ethoxymethyleneimino)-4-phosphonobutyrate

	сн ₃ сн ₂ о (CH COOCH CH C
Ion	m/z (intensity, %)	O—P—O—CH ₂ CH ₃ Comments
[MH] ⁺	324	protonated molecular ion
	(1.4)	
Α	294	-
	(25.2)	
В	278	-
	(4.2)	
-	249	ion B minus ethyl group from phosphonate moiety
	(18.9)	
[CH] ⁺	252	-
	(10)	
D	250	-
	(49.6)	
-	221	ion D minus ethyl group
	(55.2)	
-	192	ion D minus two ethyl group
	(39.9)	
E	172	-
	(94.4)	
=	148	[C=CH-CH ₂ -P(O)(OEt)(OH)] ⁺
	(44.8)	TOTAL OF BOARD
-	136	[CH ₂ =CH-PO ₃ HEt] ⁺
	(29.4)	CH CH BOYOFNIT
-	121	[CH ₂ CH ₂ -P(O)(OEt)] ⁺
	(36.6)	made at a C TO To the same Comments
-	81 (25.9)	products of -PO ₃ Et ₂ group fragmentation
	65 (10.5)	III C(O) N-CHI+
<u>-</u>	(100)	[H-C(O)-N=CH] ⁺
	(100)	<u></u>

kylphosphonic acid (0.02 mol) in ethyl orthoformate (70 ml) was refluxed carefully in an apparatus for simple distillation for 3 h with removal of the formed ethanol. Then the unreacted substrate was filtered off and the filtrate evaporated in vacuo to give oily product which was analysed by means of GC/MS spectrometry.

Gas Chromatography and Mass Spectrometry. A Hewlett-Packard 5890 series II gas chromatograph with an electron impact (electron energy of 70 eV) mass spectrum detector was used. The 25 m \times 0.25 mm HPI 110/8/300 capillary column was used. The column temperature was set up to 110°C for 3 minutes and then increased at a rate of 8°C min⁻¹ to 300°C. The modes of fragmentation were determined using the literature data. ¹³⁻¹⁵ Similarly as described in the literature the molecular ions of these derivatives were observed in low abundance. The representative modes of fragmentations alongside with the principal ions in the mass spectra of the expected products 2 and 3 obtained starting from 2-amino-4-phosphonobutyric acid are given in Tables III and IV. The fragmentation pathways and principal ions of decarboxylation products 4 and 5 are given in Table V, whereas the data for compound 7 are collected in Table VI.

TABLE V

Mode of fragmentation and principal ions in the mass spectrum of compounds 5 and 6

$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$				CH →B CH ₂	
Ion	m/z	Comments	Ion	m/z	Comments
	intensi			intensit	
DATE	y 222		DAID+	250	mustameted males:-le-
[MH] ⁺		protonated molecular	[M H] ⁺		protonated molecular ion
[M] ⁺	(1.9)	ion isotopic peak	[M] ⁺	(1.0)	isotopic peak
[141]	(19.0)	isotopic peak	[141]	(8.1)	isotopic peak
[AH] ⁺	193	_	[AH] ⁺	221	
[[[]	(7.6)	_	[/mi]	(3.8)	
	166	[NHCH2PO3Et2]+	В	193	EtOCH=N-CH-PO ₃ H ₂
	(2.5)	2 3 2	_	(7.5)	СН=СН2
	149	[H2C=CH-CHPO3EtH]	[C-1] ⁺	176	-
	(1.9)	_		(3.8)	
_	138	HPO ₃ Et ₂	-	165	[HN=CHPO3Et2]+
	(18.4)			(28.8)	
-	111	H ₃ PO ₃ Et	-	138	HPO ₃ Et ₂
	(29.7)			(74.4)	
В	84	-	-	111	H ₃ PO ₃ Et
	(100)		<u> </u>	(58.1)	
-	65	product of -PO3Et2	[DH] ⁺	84	-
	(3.2)	group fragmentation		(100)	
_	56	[H-C(O)-N=CH]+	_	65	product of -PO3Et2
	(5.1)			(2.1)	group fragmentation
-	-	_	-	56	[H-C(O)-N=CH] ⁺
		I		(4.0)	

ACKNOWLEDGEMENT

This work was supported by Komitet Badań Naukowych. The authors would like to thank Dr. Andrzej Nosal for technical assistance during GC/MS studies.

REFERENCES

- 1. P. Kafarski and P. Mastalerz, "Beitrage zur Wirkstofforschung," Institute of Wirkstofforschung, Berlin, Vol. 21, 1984.
- 2. P. Kafarski and B. Lejczak, Phosphorus, Sulfur, and Silicon, 63, 193 (1991).
- 3. P. Kafarski, B. Lejczak and P. Mastalerz, "Beitrage zur Wirkstofforschung," Institute of Wirkstofforschung, Berlin, Vol. 25, 1985.
- 4. J. E. Hanson, A. P. Kaplan and P. A. Bartlett, Biochemistry, 28, 6294 (1982).
- 5. N. Camp, P. C. D. Hawkins and P. B. Hitchock, Bioorg. Med. Chem. Lett., 2, 1047 (1992).
- D. Maffre-Lafon, R. E. Scale, P. Dumy, J.-P. Vidal and J.-P. Girard, Tetrahedron Lett., 3, 4097 (1994).
- 7. H.-J. Musiol, F. Grams, S. Rudolph-Bohner and L. Moroder, J. Org. Chem., 5, 6144 (1994).

TABLE VI

Mode of fragmentation and principal ions in the mass spectrum of compound 7

		O C ₆ H ₅
	$CH_2 = C$	OCH ₂ CH ₃
	CH B k ∣	1 ₂ A
		² D₂CH₂CH₃
Ion	m/z	Comments
	(intensity, %)	
[MH] ⁺	283	protonated molecular ion
	(2.0)	
[M] ⁺	282	isotopic peak
	(12.6)	
-	253	isotopic peak minus ethyl group
	(3.5)	
Α	237	·
	(23.8)	
В	209	-
	(100)	
-	185	CH ₃ -P(OH)(OEt)C ₆ H ₅
	(12.6)	
-	157	СH ₃ -Р(ОН) ₂ С ₆ H ₅
	(11.2)	
-	141	[HPO ₂ (C ₆ H ₅)] ⁺ fragment
	(83.2)	
-	125	[HPO(C ₆ H ₅)] ⁺ fragment
	(7.7)	
-	105	[CP(OH)(OEt)] ⁺
	(3.5)	
-	77	-C ₆ Н ₅
	(42.6)	
-	67	H ₄ PO ₂
	(8.4)	

- 8. J.-H. Bateson, B. C. Gasson, T. Khushi, J. E. Neale, D. J. Payne, D. A. Tolson and G. Walker, Bioorg. Med. Chem. Lett., 4, 1667 (1994).
- 9. P. Kafarski and B. Lejczak, Tetrahedron, 45, 7387 (1989).
- 10. P. Kafarski and B. Lejczak, Tetrahedron, 45, 7387-7396 (1989).
- Y. Song, D. Niederer, P. M. Lane-Bell, L. K. P. Lam, S. Crawley, M. M. Palcic, M. A. Pckard, D. L. Pruess and J. C. Nvederas, J. Org. Chem., 59, 5784 (1994).
- 12. P. Kafarski and B. Lejczak, Synthesis, 307 (1988).
- 13. Z. H. Kudzin, M. Sochacki and W. Kopycki, J. Chromatogr. A, 655, 346 (1993).
- 14. Z. H. Kudzin, M. Sochacki and J. Drabowicz, J. Chromatogr. A, 678, 299 (1994).
- 15. P. Hermann, I. Lukes, B. Maca and M. Budesinsky, Phosphorus, Sulfur, and Silicon, 79, 43 (1993).